
International Journal of Solids and Structures 42 (2005) 5683–5691

www.elsevier.com/locate/ijsolstr
Review of station keeping strategies for elliptically
orbiting constellations in along-track formation

Peter M. Bainum *, Zhaozhi Tan, Xiaodong Duan

Howard University, Department of Mechanical Engineering, Washington, D.C. 20059, USA

Received 20 October 2004; received in revised form 4 March 2005
Available online 13 April 2005
Abstract

Three techniques for station keeping an orbiting constellation of satellites in an elliptical orbit are developed: (1)
based on an application of the linearized Tschauner–Hempel (TH) equations for the motion of a daughter satellite rel-
ative to a reference (mother) satellite together with the linear quadratic regulator (LQR) control strategy which can be
used in a piecewise adaptive manner; (2) since the mathematical model is inherently nonlinear and time varying, a con-
trol law based on a non-linear Lyapunov function is applied to daughter satellites� osculating orbital elements; (3) by
carefully selecting relative orbital design parameters so that the relative secular drifts due to the non-spherical Earth�s
perturbation in the longitude of the ascending node, the argument of perigee and mean anomaly could vanish or be
constrained to a desired value.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Of several designs proposed for the NASA Auroral Cluster Observation System mission is an along-
track formation in an elliptical orbit of up to four spacecraft with constant distances between adjacent
satellites.

A novel idea proposed in Tan et al. (1999) would involve an impulsive maneuver at perigee that would
cause a small shift in the direction of the semi-major axis of the daughter satellite with respect to the
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original orbit (of the mother satellite). Without perturbations and subsequent control effort this separation
distance could be maintained with the drift from the nominal value remaining of the order of ±2%. In the
presence of perturbations (mainly from the Earth�s oblateness) additional station keeping control would be
required to counteract the resulting secular drift in the average separation distance.
2. Application of the linearized Tschauner–Hempel equations with an LQR control strategy

The Tschauner–Hemple equations (Tschauner, 1967) describe the motion of a daughter spacecraft close
to rendevous with a reference or mother spacecraft in a nominal elliptical orbit. These equations can be
linearized and recast in the familiar state-space representation as:
x0 ¼ Axþ Bu where x ¼ ðngfn0g0f0ÞT; 0 ¼ dðÞ=df ð1Þ

and n, g and f are non-dimensionalized coordinates centered at the target or reference spacecraft. n de-
scribes cross track (outward radial) motion, g-along track, and f out of the nominal orbit plane of the target
spacecraft. The non-zero elements of the state matrix, A are: a14 = a25 = a36 = 1 = �a63; a45 = 2 = �a54;
and a31 = 3lr/h2. r refers to the orbital radius, h the angular momentum per unit mass, l the gravitational
constant (universal gravitational constant times the Earth�s mass), and f is the true anomaly. The variable
term in the state matrix can be adjusted in a number of ways:

1. When it is assumed that r remains constant (i.e. equal to r(h) = h2/l), true for a circle and relatively short
displacements, then the term becomes equal to 3.

2. If the simulation is started at perigee or apogee then evaluate r at perigee or apogee, respectively, and
treat as constant for sufficiently short time thereafter.

The last two matrices in Eq. (1) can be identified as the control influence matrix B, and the control input
matrix u = [an,ag,af]

T, in terms of the control accelerations. If the control accelerations are not provided
directly along the n,g, f axes then the B matrix (e.g. Ci values, or more complicated arrangements) can
be adjusted accordingly. For simplicity here, assume u1 = c1 an, u2 = c2 ag, u3 = c3 af.

For the application of the linear quadratic regulator, assume that the state matrix is, at least, piecewise
constant, and that the performance index (Athans and Falb, 1966)
J ¼
Z 1

0

½xTQxþ uTRu�dt ð2Þ
Assuming all states are immediately available and in the absence of noise, a parametric study was under-
taken by using various weighting functions. A typical result is shown in Fig. 1 of Bainum et al. (2002),
shown here as Fig. 1.

The results presented assume that the initial LQR correction begins near perigee at a true anomaly angle
of 45�. The periodic system A matrix is evaluated at that true anomaly angle. If the responses occur in a
relatively short time interval it is assumed that this value could be used throughout the maneuver (the case
considered here). The state here is defined as ðx; y; z; _x; _y; _zÞ. The center of this moving coordinate system is
taken at the nominal position of any daughter satellite in the orbit. Thus a displacement of 1 km along
track actually represents a displacement of dmother–daughter + 1 km along track, where dmother–daughter is
the desired mother–daughter separation distance for this application. Here an out-of-plane error in position
of 1 km is given at the 45� true anomaly point, in addition to a 1 km error along track. Fig. 1 depicts con-
sistence as it relates to input error. Furthermore, damped simple harmonic motion (SHM) is demonstrated
as predicted by the out-of-plane Tschauner–Hempel equation.



Fig. 1. LQR transient responses—in-plane and out-of-plane initial displacements.
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3. Nonlinear control law based on Lyapunov function applied to the osculating orbital elements

This is a nonlinear control law based on the non-linear mathematical model. Comparing to the control
strategy described above, there is no error introduced from linearization. The variational equations of
Gauss provide a convenient set of equations relating the effect of a control acceleration vector u to the oscu-
lating orbital element time derivatives (Battin, 1987):
_a ¼ ð2a2=hÞðe sin fur þ ðp=rÞuhÞ ð3Þ

_e ¼ ½p sin fur þ ððp þ rÞ cos f þ reÞuh�=h ð4Þ
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_ı ¼ ½ðr cos hÞ=h�uh ð5Þ

_X ¼ ½ðr sin hÞ=ðh sin _ıÞ�uh ð6Þ

_x ¼ 1

he
½�p cos fur þ ðp þ rÞ sin fuh� �

r sin h cos _ı
h sin _ı

uh ð7Þ

_M ¼ nþ ½g=ðheÞ�½ðp cos f � 2reÞur � ðp þ rÞ sin fuh� ð8Þ

We define x ¼ ð a e _ı X x MÞ0 as the state variable vector and u = (ur lh uh)

0 as the control
acceleration vector, written in the Local-Vertical-Local-Horizontal frame, f is the true anomaly, r is the sca-
lar orbit radius, p = b2/a is the semi-latus rectum, h = x + f, and h ¼ ffiffiffiffiffi

pc
p

, g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, n ¼

ffiffiffiffiffiffiffiffiffi
c=a3

p
. Incor-

porating the J2 influence, Eqs. (3)–(8) can be written as
_x ¼ BðxÞuþ DðxÞ where DðxÞ ¼ DðJ 2;Re; n; a; e; iÞ ð9Þ

It is found out that the elements of D are either zeros or very small as compared with non-zero elements of
B(x)u, therefore, D(x) is treated as a minor disturbance. If the osculating orbital elements of the mother
satellite are x1, the required osculating orbital elements of the first daughter satellite are x2, then
Dx ¼ x2 � x1 i.e. x2 ¼ x1 þ Dx ð10Þ

Assuming that the actual osculating orbital elements of the first daughter satellite are x2d, then
dx ¼ x2d � x2 i.e. x2d ¼ x2 þ dx ð11Þ

We define a Lyapunov function as
V ¼ 1

2
ðaþ be�atÞ � dxTdx where a > 0; b > 0; a > 0; therefore; V > 0 ð12Þ
then
_V ¼ � 1

2
bae�atdxTdxþ ðaþ be�atÞdxTd _x ð13Þ

dx ¼ x2d � x2 ¼ x2d � x1 � Dx see Eqs: (10) and (11)
where
) d _x ¼ _x2d � _x1 note that Dx does not vary with time
After substitution, it can be shown that _V is negative semi-definite (Bainum et al., 2002).
A typical result with J2 included and for initial errors in the daughters ‘‘a’’ of 1 km, and small errors in

‘‘e’’ and ‘‘i’’ shows that the osculating orbital elements converge smoothly and that the maximum control
efforts are less than 10�4 m/s2 (Fig. 4 of Bainum et al. (2002)), shown here as Fig. 2.
4. Selecting orbital design parameters so that relative secular drifts remain small

The analytic solutions of the perturbation equations using the mean orbital elements for the motion of a
spacecraft are given in (Duan and Bainum (2003)) in terms of long and short periodic oscillations as well as
secular effects.

The possibility that the relative secular drifts due to the non-spherical Earth�s perturbation in the longi-
tude of the ascending node, the argument of perigee and mean anomaly could vanish or be constrained to a
desired value is discussed. A general set of solutions is introduced for this problem. Thus, it is possible to



Fig. 2. Difference of orbital elements between adjacent satellites and control efforts.
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choose design parameters to satisfy different requirements for formation flying and constellation station
keeping.

Let the difference between the secular drift rates of two neighboring orbits (long term drift rates of the
longitude of the ascending node, the argument of perigee and the mean anomaly) be: DX, Dx and DM. We
can obtain the following:
DX ¼ oðX1 þ X2 þ � � �Þ
oa

Daþ oðX1 þ X2 þ � � �Þ
oe

Deþ oðX1 þ X2 þ � � �Þ
oi

Diþ H .O.T ð14Þ

Dx ¼ oðx1 þ x2 þ � � �Þ
oa

Daþ oðx1 þ x2 þ � � �Þ
oe

Deþ oðx1 þ x2 þ � � �Þ
oi

Diþ H .O.T ð15Þ

DM ¼ oðnþM1 þM2 þ � � �Þ
oa

Daþ oðnþM1 þM2 þ � � �Þ
oe

Deþ oðnþM1 þM2 þ � � �Þ
oi

Diþ H .O.T

ð16Þ

We can rewrite the first order form of above equation as A~x ¼~b, where
~x ¼ ½Da De Di �T

~b ¼ ½DX Dx DM �T
ð17Þ
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For all the relative secular drifts to vanish (~b ¼ 0), we look for non-zero solutions of A~x ¼~b. We can con-
sider the following situations:

Case 1: DX = 0 and D(x + M) = 0;
Case 2: DX = Dx = DM = 0;
Case 3: DM = 0 and D(x + X) = 0 etc.

Analytic solutions for different cases can be formulated based on the general solution. For example,
Eqs. (18) and (19) show a set of simplified solutions for case 1.
Da ffi ð1þ 5cos2iÞ � 4

3
� ð1� e2Þ1=2

� �
A2e

að1� e2Þ3
De ð18Þ
Given orbital parameters 
(mean orbital elements) 
of the reference orbit

Design the neighboring orbit 
to satisfy the requirement of 
relative drifts

Transfer mean orbital elements 
into osculating (instantaneous) 
orbital elements

Coordinate Translation ( ⇒x,y,z). 
Then use BG14 [7] simulation 
software to verify the design.

Fig. 3. Simulation procedure.
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Fig. 4. The relative drift of the longitude of the ascending node.
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Da ¼ tan i � 2� 5

2
sin2i

� �
þ 3

4

�
1� e2

�1=2

1� 3

2
sin2i

� �" #
þ sin i cos i½�3ð1� e2Þ1=2 � 5�

( )
2
3
A2

að1� e2Þ2
Di

ð19Þ

The BG14 Advanced Simulation Development System (ASDS), a high precision numerical simulation
model, is used to verify the correctness of the algorithms and the design. Developed by McDonnell Douglas
Aerospace, BG14 ASDS provides highly accurate propagation of orbits over both short and long time
intervals and is suited for simulating many problems. This simulation software is independent of the algo-
rithms and the design proposed in this research, and provides an independent verification of the accuracy of
the computed results.

Fig. 3 demonstrates the simulation procedure. As an example here, Case 1 is considered. The simulation
tries to verify the effectiveness of causing the relative drift of the longitude of the ascending node and also
the relative drift of the sum of the argument of perigee and mean anomaly to vanish, and, finally, the effec-
tiveness of maintaining the relative distance between two satellites on two neighboring orbits.

A typical numerical result is shown in Figs. 4–6 where the relative drifts and the desired 1 km separation
between a daughter and mother satellite can be very well maintained during a 30 day response based on the
use of the osculating orbital elements as input to the orbital propagator software. However, the design
using the mean elements directly is divergent, contrasting with the results based on the osculating elements
as input. It can be observed clearly that although the mean input and the osculating input come from the
same design for the relative orbits, a small variation in nominal orbital parameters can result in a noticeable
difference in the maintenance of the formation or constellation.

In summary, by carefully selecting relative orbital design parameters, the relative drifts in the longitude
of the ascending node, the argument of perigee and mean anomaly, due to the J2, J4 effects or the
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Fig. 5. The relative drift of the sum of the argument of perigee and the true anomaly.
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Fig. 6. Time history of separation distance.
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combination of them could vanish or be controlled to a desired value. Therefore, a general design could be
provided for formation flying and constellation station keeping. There could be a significant savings in en-
ergy consumption for the whole life cycle of the mission since this kind of relative orbits may need less en-
ergy consumption.
5. Conclusions

Simulation results for the first two station keeping techniques show that the responses to initial errors
converge smoothly with the control energy at a low level. The LQR-TH approach incorporates the robust-
ness advantages of an LQR technique, while the Lyapunov approach is shown to result in an asymptoti-
cally stable nonlinear system. High precision simulations show the effectiveness of the third approach in
choosing orbital design parameters to minimize the effects of secular drifts due to perturbations.
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